首页> 外文OA文献 >Learning a Robust Local Manifold Representation for Hyperspectral Dimensionality Reduction
【2h】

Learning a Robust Local Manifold Representation for Hyperspectral Dimensionality Reduction

机译:学习用于高光谱降维的鲁棒局部流形表示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Local manifold learning has been successfully applied to hyperspectral dimensionality reduction in order to embed nonlinear and non-convex manifolds in the data. Local manifold learning is mainly characterized by affinity matrix construction, which is composed of two steps: neighbor selection and computation of affinity weights. There is a challenge in each step: (1) neighbor selection is sensitive to complex spectral variability due to non-uniform data distribution, illumination variations, and sensor noise; (2) the computation of affinity weights is challenging due to highly correlated spectral signatures in the neighborhood. To address the two issues, in this work a novel manifold learning methodology based on locally linear embedding (LLE) is proposed through learning a robust local manifold representation (RLMR). More specifically, a hierarchical neighbor selection (HNS) is designed to progressively eliminate the effects of complex spectral variability using joint normalization (JN) and to robustly compute affinity (or reconstruction) weights reducing collinearity via refined neighbor selection (RNS). Additionally, an idea that combines spatial-spectral information is introduced into the proposed manifold learning methodology to further improve the robustness of affinity calculations. Classification is explored as a potential application for validating the proposed algorithm. Classification accuracy in the use of different dimensionality reduction methods is evaluated and compared, while two kinds of strategies are applied in selecting the training and test samples: random sampling and region-based sampling. Experimental results show the classification accuracy obtained by the proposed method is superior to those state-of-the-art dimensionality reduction methods.
机译:局部流形学习已成功地应用于高光谱降维,以便将非线性和非凸流形嵌入数据中。局部流形学习的主要特点是亲和度矩阵的构建,它由两个步骤组成:邻居选择和亲和度权重的计算。每个步骤都有一个挑战:(1)由于数据分布不均匀,照度变化和传感器噪声,邻居选择对复杂的光谱变化敏感。 (2)由于邻域中高度相关的光谱特征,亲和权重的计算具有挑战性。为了解决这两个问题,在这项工作中,通过学习鲁棒的局部流形表示(RLMR),提出了一种基于局部线性嵌入(LLE)的新颖流形学习方法。更具体地说,分层的邻居选择(H​​NS)设计为使用联合归一化(JN)逐步消除复杂频谱可变性的影响,并通过精炼的邻居选择(RNS)稳健地计算亲和力(或重构)权重,从而降低共线性。另外,将空间光谱信息相结合的想法被引入到提出的流形学习方法中,以进一步提高亲和力计算的鲁棒性。探索分类作为验证所提出算法的潜在应用。评估和比较了使用不同降维方法时的分类精度,同时在选择训练样本和测试样本时采用了两种策略:随机抽样和基于区域的抽样。实验结果表明,该方法获得的分类精度优于那些最新的降维方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号